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AhstracL The fist Lyapunov exponent in a period window for a weak-muplcd map 
lattice is calculated. Within the windows the behaviour of the coupled map lattice could 
be rewered by considering a small number of modes. ?%e depth of the windows is 
well defined. 

1. Introduction 

It is well known [1-4] that both periodic and chaotic motion could take place in 
a deterministic dynamical system such as a nonlinear map or a set of nonlinear 
differential equations. Recently much attention has turned to the so-called temporal- 
spatial chaos in a coupled map lattice and in nonlinear partial differential equations. 
In this paper we discuss a standard onedimensional diffusively coupled map lattice 
with the dynamics given by [5-71 

here zc) E [0,1] is the state at the lattice point i ( i  = 1,2, .  . . , L )  at a discrete time 
step n, and L the system size. We always mume  periodic boundaq conditions, i.e. 

+" ( 0 )  = +p Vn. (2) 

The parameter e in (1) is called the coupling strength. In the case of E = 0 the 
map lattice (1) is called an uncoupled map lattice, and all point in the lattice then 
becomes independent of one other. The local mapping function f (  z), for instance, 
can be chosen as a unimodal map [S-71 

f ( z ) = p 2 ( 1 - 2 ) .  (3) 
The dynamics of this map could be either periodic or chaotic, depending on the 
nonlinearity p.  The region 1 < p < pLm I 3.5699456.. . may be called the 
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bifurcation region, where the dynamics is always periodic, and a bifurcation cascade 
is found. On the other hand, for pm < p < 4 the iteration does not have to be 
periodic, and this region is called the chaotic region. With p = 4.0 the function maps 
the interval [0, 11 exactly onto itself, the map is then said to be 'complete', and the 
dynamics is in a fully developed chaotic state. However, for some values of p in the 
chaotic region a periodic motion is still possible, and such intervals of p are called 
periodic windows. 

Chaotic or periodic motion in a single map is characterized by a positive or 
negative Lyapunov exponent defined by 
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with xo the starting point. For the coupled maps (1) a set of Lyapunov exponents 
can similarly be defined by considering the variation 

where 

A . .  *I = (1 - e)f'(z;))fijj + L [ ~ ' ( X C - ' ) ) ~ ~ - ~ ,  2 + f ' ( ~ ; + l ) ) 6 ~ + ~ ~ ] .  (6) 

The system (1) has L Lyapunov exponents. The largest one, often called the first 
Lyapunov exponent, descnies the growth of distance analogously to the single-map 
case. Numerically this exponent can be calculated by the standard technique [8]. 

In a recent work [9] the authors found that for the complete maps there is a 
universal relation between the first Lyapunov exponent A and the coupling strength e: 

A N A, + ice0 for e - 0 .  (7) 

Here A, and n depend on the details of the maps, and U is a universal constant 

a = l f p  (8) 

the with p the order of the local map's maximum. This scaling law, however, is no 
longer valid for the value of the parameter p in a period window. For instance, at 

p the stable orbit of the single map has period 3. At p = 3.8415.. . a fork 
bifurcation takes place, and the period of the stable orbit becomes 6. Hence, as 

p = pu I 1 + %"@ 3.82%. , . 2 t2.g.m bif.rs&fi XQJE, with. a !=per value of 

PO < p < p6 (9) 

the stable state of iteration (3) is a period-3 orbit. In this paper we will mainly 
consider this period-3 window. If the parameter p takes a value in the interval (9) 
the spatially homogeneous and temporally periodic state is linearly stable, as can be 
easily checked. This window should be observed for initial conditions in the vicinity 
of the homogeneous state. For random initial values in a coupled map lattice of 
large size, however, as long as the coupling strength is not very weak, it takes an 



The Lyaputwv eqonents in a periodic window 2899 

extremely long time (increasing more rapidly than eL) to settle down to the stable 
coherent state [7, lo]. The stable homogeneous period-3 motion then could hardly 
be observed in a numerical experiment. The window is distroyed for almost all 
initial conditions. Mechanisms of this deshuction are spatiotemporal intermittency 
and supertransients [7]. The value obtained in a numerical simulation for the first 
Lyapunov exponent is often positive, and is called 'finite-time Lyapunov exponent'. In 
the case of very weak coupling strength e (about varied stable period3 motion 
might be found, which could be either homogeneous or not, after a short transient 
time (a In C). It implies that the behaviour of the map lattice system with very 
weak coupling strength is quite complicated. Because of this complicated nature the 
detailed structure of the period window has never been studied. In this paper we will 
discuss the dependence of the first Lyapunov exponent on the coupling strength in 
the period windows. 

In section 2 the first Lyapunov exponent A is calculated by the standard technique, 
and the dependence of the values A on the strength of coupling E are shown to be 
zigzag-like. In section 3 a mode-analytic approach for calculating the first Lyapunov 
exponent is proposed, and the zigzag A-€ curve is explained by the new approach. 
Some discussions are included in the last section. In the present paper we will only 
discuss the coupled map lattice (1) with local dynamics (3). Results presented here, 
however, could be generalized to other maps and other couplings. 

2. Numerical simulation 

Let us a t  first observe a numerical result. nking L = 173 and f i  = 3.831, keeping a 
value of e within the interval [0, 0.002], we calculate the first Lyapunov exponent A 
over 1440 iterations after 8000 transient iterations. The initial values for the lattice 
are vested randomly. The results are shown in figure 1, where the A-€ curve is 
zigzag-like in the interval [O,ew] with g - 1.22 x The negative first Lyapunov 
exponent in this interval means that the motion of the map lattice system is periodic. 
When e > cW we find that A > 0, and the motion becomes chaotic. The fact that 
the variation of A in order of lo-' is caused by a small variation of e in order of 

implies that the very weak coupling could change the behaviour of the system 
distinctly. 

The elements A,, in the matrix (4) alter their values as increasing the coupling 
strength. In one aspect the values of f( zc)) might change since the orbits zk) move 
away from the original orbits for the uncoupled maps. In the other aspect the values 
of the factors (1 - E) and e/2 change also. It is clear that the latter could alter the 
A oniy in rhe magnitude order O(ej, and the former must be respnsibie for the 
variation of A. Then the matrix A ( N )  could be considered to be diagonal with the 
elements 

lX=O 

Letting N = T with T the period of the motion, the Lyapunov exponents of total 
number of L are approximated as 
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A 

& . 
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Ngure I. Thc a~lw of the first Lyapunav exponent A for the map IattiR system, 
obtained by the standard technique, versus the wupling smength e. Hue L = 173, and 
/r = 3.831. 

which is coincident with the formula for the single map (3). As long as the orbits z?) 

the formula (10). 
Fa- *̂ Î. -"- 1- .L̂  I"..>-" "-- *-..--I e-. ---- L ..- L. --..~.,.. ~ 1 L~ 
LUI ~ a u  ulap ux ULC IULUCC arc iuwiu, iimt ~yayunuv wryurienw can oe carcuiareu oy 

3. Modeanalytic method 

In this section we denote the period-3 orbit of the single map (3) as zo =. f(zz), 
xr = f(zo), and xz = f ( x , ) .  Lening e = 0, we have an uocoupled map latnce. For 
any random initial conditions each individual map in this lattice would settle down 
to this period orbit after a short transient time. That means that the iteration of 
each lattice point would visit zO, xl, and zz successively. For a lattice of large size, 
however, the 'phases' of all lattice ~oints  could hardly be coherent. In other words, 
the state of the uncoupled map laitice is mostly inhomogeneous. For a given time 
each lattice point must visit one of the three values xo. x,, or z2, being denoted 
as 0, 1 and 2, respectively. The state of the lattice at a certain time could then be 
described by a sequence of total number L, for instance 

0: 0: l j  2: 1: 0: 2: 2: 0: 2; ... ~ 1. (11) 

As the couplings between the neighbours switch on, the orbit of each local map might 
change. However, as long as the coupling strength is weak enough the modification 
of the orbits must be very small, so we can still denote the state of the lattice as 
the sequence (11). In order to calculate the modified orbit for a given lattice point, 
we may mump. that i$ neigh!!Qurs stick to !h& aigina! orhi@: Hence we can 
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consider the following simple set of three maps 

This set of maps can be studied numericah as well as analytically, and the stable 
period orbits, which certain@ depend on the initial condition, can be obtained. The 
initial configuration is denoted as ( k , l , m ) ,  with k, 1 and m taken to be 0, 1 or 2, 
which means that the initial values for the lattice points ( i  - l), i and ( i  + 1) are 
set to zk, zI and z,, respectively. For a given (k, 1 ,  m) the three-dimensional maps 
are called a mode. It is clear that within three iterations each point of the lattice 
will visit the three values q,, z1 and z2, though their starting values are different. 
Without lasing generalities we may assume that 1 = 0 and m 2 k. Then for the 
period-3 window there are six modes altogether, namely 

(O,O,O), (0,0,1), (0,0,2), (1 ,0 ,1 ) ,  (1,0,2), ( 2 , 0 , 2 ) .  (13) 

In the case of the sequence (U), for example, the map at the second point of the 
lattice, i = 2, is located at the mode (O,O,l). As to the map at point i = 3 we 
have the mode (0,1,2) which becomes (2,0,1) after two iterations, and could be 
rewritten as (1,0,2), appearing in (13). For a given mode (12) the motion of the 
middle map can be d e m i e d  by 

-n+i  .A i )  - = - F(.Ji)l \-a I (14) 

and 

while the motions of its neighnours, the lattice points ( i  - 1) and ( i  + l), are in the 
stable period-3 orbit since each of them is essentially an independent single map (3). 
The form of F(z) must return to itself after every three time steps because t,(i) 
ChknngS i@ value with period 3: Hence the fimncti_nn 

x,+, = F @ ) ( X , )  I F { F [ F ( X , ) ] )  (17) 

defies a one-dimensional map in the interval X ,  E [0,1] with two parameters p 
and e. The mode (k, 1 ,  m) is called stable if there is a stable fixed point near 
X, = z l ,  otherwise it is unstable. In fact, as we will see later, there is a well defined 
value of et = e,( w )  at which the map (17) undergoes a tangent bibscation. The exact 
meaning of the statement ‘a coupling strength being weak enough’ in this paper is 
that < E,. In this case a fixed point near I, is stable, and the mode (k, I, m) then 
must be stable too. For a stable mode ( k , l , m )  the maps (12) must retum to this 
mode after any number of periods. 
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Let us determine the tangent bifurcation point for each mode in (13). In the case 
of e = 0 we may consider only the single map (3) for which the leftmmt point the 
po of the period-3 window in the p-axis corresponds to the tangent bifurcation 

When p > p,, the tangent bifurcation point takes place at some value of E, > 0. This 
could be calculated by considering 

which are equations characterizing the dependence of E, on p at the tangent bifurca- 
tion point. Letting 

Y(",P,€) = FtFIF(x)ll-x (20) 

we have from (18) that 

Hence we obtain from (19) by the implicit function theorem that 

A simple calculation gives 

and 

For a given mode (k, 0, m )  we have 

t" = f ( X K  + Z M )  (25) 

where 

K = ( k + n + l )  m o d 3  M = ( m + n + l )  m o d 3 .  (26) 
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For the period-3 window po = 1 + J8 and zo = 0.1599, zI 
we can obtain from (23)-(25) 

0.5144, z2 Y 0.9563, 

for (O ,O,  0) 
0.7071 for (0,0,2) 
0.4714 for (0,0,1) 

0.2828 for (1,0,2) I 0.2357 for ( l , O , l ) .  

for (Z ,O,Z j  r ,. nrnn 

de -= 
U.JJJ0 :p 

The tangent bifurcation takes place at 

If e > 0.7071(p - po). only the mode (O,O,O) is stable, and the stable state for the 
coupled map lattice (1) is the coherent period state. As we mentioned above the 
map lattice system in this case will in fact display a chaotic motion because of the 
extremely long relaxation time. If 0.4714Cp - pc) < z < 0.7071(p - p,,L we have 
two stable modes ( O , O , O )  and (0,0,2), and it seems to us that the stake state of 
(1) may not be a coherent one. However, a sequence of form (11) can never be 
constructed by these two modes, and a thud mode has to be added. So the motion 
of the system (1) in this case is still chaotic. When e < 0.4714(p - po) we have at 
least three stable modes ( O , O , O ) ,  (0,0,2), and (O,O, l ) ,  and an inhomogeneousstate 
for (1) could be constructed easily, such as 

o , o ,  1,1, 1,2,2,2,0,0 , . . .(  0. (29) 

Hence we find that the boundary of the period-3 window for (1) can be defined as 

ew N 0.4714(p - p o ) .  (30) 

For p = 3.831 we have p-p,, N 0.00273, and the depth of the window is ew 1.21 x 
lo-', coinciding with the numerical results in figure 1. According to (28) the other 
three peaks of the curve in figure 1 should be e1 .* 0.2357 x 0.00273 z 6.43 x 
e2 N 7.72 x and e3 N 9.65 x respectively. 

For a given set of the initial conditions each lattice point with its two neighbours 
must very quickly reach one of the modes. As long as the size of the lattice system 
is large enough every mode could appear. If a mode is unstable for the given p and 
e it will collapse, and eventually relax to a stable mode. For the period-3 window 
three or more stable modes can always be organized to a long chain. Then the first 
Lyapunov exponent for the map lattice (1) must be the largest Lyapunov exponents 
within the stable modes. 

The numerical work to calculate the first Lyapunov exponent has been done using 
the mode-analytic method proposed above. The results are shown in figure 2. It is 
easy to find that in the interval e E [O,ew] they coincide with that of figure 1, the 
results obtained by the standard technique. When e > ew the standard method gives 
positive first Lyapunov exponent while the mode-analytical method gives the coherent 
orbit's results. 
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A 

E 

0.0E+000 5 OK-004 1.0E-003 1.SE-003 2.0E-003 

F l g w c Z .  The fust Lyapunovexponent, calculated by the mode-analytic method, proposed 
in the preaent paper. 

4. Discussions 

(i) The va_!ue of $4 = ?;@I is !es than &, CQEeSpldhg to !!I._ w.p$st&!e erbit. 
For p > pc the criterion is still Correct. The numerical result$ for p = 3.833 > pc, 
obtained both by the standard technique and by the mode-analytical method, are 
shown in figure 3. It is evident that they coincide each other perfectiy in the interval 
e < Ew. 

(2) By numerical simulations for map lattice (1) we find the depth of the period-3 
window. The results; shown h figure 4; are in agreement with (N) Wrther hcre&g 
the value of p we may arrive the period-doubling bifurcation point pb. For p > pb 
the period of the single map (3) becomes 6, and the mode-analy&ic method proposed 
here is no longer valid. 

(iii) The method is applicable to the leading period of every period window, but 
the formulae (23) and (24) should be generalized respectively to 

and 

where the is are defined in (25) and (26) with per id  T instead of 3. 
(iv) The dislssion in this paper k confined to the stable periodic state of the 

coupled map lattice. The approach, however, might also be helpful to ths discussion 
of the window4haos transiti~!!~ sh~died in !7$ 
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e 
O.@E+000 1 .OE-003 2.0E-003 3.OE-003 4.OE-002 

Flgnro 3. For p = 3.834 the numerical calculation for the fist Lyapunov exponent A. 
The full curve stands for the standard method and the broken curve for the mode-analytic 
method. 

E 

4 OE-OW 

0 OEtOOO 
3 820 3 825 3 830 3 835 3840 3 845 3 850 3 855 

F l p  4. The depth of the period9 window for the coupled map lattice. 
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